Effects of different 3-year cropping systems on soil microbial communities and rhizoctonia diseases of potato.

نویسندگان

  • Robert P Larkin
  • C Wayne Honeycutt
چکیده

ABSTRACT Eight different 3-year cropping systems, consisting of soybean-canola, soybean-barley, sweet corn-canola, sweet corn-soybean, green bean-sweet corn, canola-sweet corn, barley-clover, and continuous potato (non-rotation control) followed by potato as the third crop in all systems, were established in replicated field plots with two rotation entry points in Presque Isle, ME, in 1998. Cropping system effects on soil microbial community characteristics based on culturable soil microbial populations, single carbon source substrate utilization (SU) profiles, and whole-soil fatty acid methyl ester (FAME) profiles were evaluated in association with the development of soilborne diseases of potato in the 2000 and 2001 field seasons. Soil populations of culturable bacteria and overall microbial activity were highest following barley, canola, and sweet corn crops, and lowest following continuous potato. The SU profiles derived from BIOLOG ECO plates indicated higher substrate richness and diversity and greater utilization of certain carbohydrates, carboxylic acids, and amino acids associated with barley, canola, and some sweet corn rotations, indicating distinct differences in functional attributes of microbial communities among cropping systems. Soil FAME profiles also demonstrated distinct differences among cropping systems in their relative composition of fatty acid types and classes, representing structural attributes of microbial communities. Fatty acids most responsible for differentiation among cropping systems included 12:0, 16:1 omega5c, 16:1 omega7c, 18:1 omega9c, and 18:2omega6c. Based on FAME biomarkers, barley rotations resulted in higher fungi-to-bacteria ratios, sweet corn resulted in greater mycorrhizae populations, and continuous potato produced the lowest amounts of these and other biomarker traits. Incidence and severity of stem and stolon canker and black scurf of potato, caused by Rhizoctonia solani, were reduced for most rotations relative to the continuous potato control. Potato crops following canola, barley, or sweet corn provided the lowest levels of Rhizoctonia disease and best tuber quality, whereas potato crops following clover or soybean resulted in disease problems in some years. Both rotation crop and cropping sequence were important in shaping the microbial characteristics, soilborne disease, and tuber qualities. Several microbial parameters, including microbial populations and SU and FAME profile characteristics, were correlated with potato disease or yield measurements in one or both harvest years. In this study, we have demonstrated distinctive effects of specific rotation crops and cropping sequences on microbial communities and have begun to relate the implications of these changes to crop health and productivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield

This study was conducted to explore the changes in soil microbial populations, enzyme activity, and tuber yield under the rotation sequences of Potato-Common vetch (P-C), Potato-Black medic (P-B) and Potato-Longdong alfalfa (P-L) in a semi-arid area of China. The study also determined the effects of continuous potato cropping (without legumes) on the above mentioned soil properties and yield. T...

متن کامل

Fluctuations of soil bacterial communities under potato cropping

It is important to understand the underlying factors that lead to shifts in soil microbial communities, not simply for the characterization of these complex biotic systems, but also to understand the impact that changes in microbial community composition may have on terrestrial ecosystems. In this study, the impact of genetically different potato (Solanum tuberosum) plants growing in arable soi...

متن کامل

Wheat Genotype-Specific Induction of Soil Microbial Communities Suppressive to Disease Incited by Rhizoctonia solani Anastomosis Group (AG)-5 and AG-8.

ABSTRACT The induction of disease-suppressive soils in response to specific cropping sequences has been demonstrated for numerous plant-pathogen systems. The role of host genotype in elicitation of the essential transformations in soil microbial community structure that lead to disease suppression has not been fully recognized. Apple orchard soils were planted with three successive 28-day cycle...

متن کامل

The effect of slash/mulch and alleycropping bean production systems on soil microbiota in the tropics

Mulch applied to tropical soil may increase soil health both through stimulation of microbiota beneficial to plant nutrient uptake and the suppression of plant disease. To test this hypothesis, we compared beans in three cropping systems: (1) mulched with secondary vegetation (slash/mulch), (2) mulched with foliage from alleycropped nitrogen-fixing trees, Calliandra calothyrsus, Gliricidia sepi...

متن کامل

Manipulation of rhizosphere bacterial communities to induce suppressive soils.

Naturally occurring disease-suppressive soils have been documented in a variety of cropping systems, and in many instances the biological attributes contributing to suppressiveness have been identified. While these studies have often yielded an understanding of operative mechanisms leading to the suppressive state, significant difficulty has been realized in the transfer of this knowledge into ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Phytopathology

دوره 96 1  شماره 

صفحات  -

تاریخ انتشار 2006